This book can be purchased through Amazon here. A summary is presented below.

Slurry Trenching – History, Uses, Fundamentals, and Construction

Daniel G. Ruffing, P.E., D.GE¹ and Jeffrey C. Evans P.E., D.GE, PhD²

¹Vice-President, Geo-Solutions, Inc., 1250 Fifth Avenue, New Kensington, PA 15068; E-mail: druffing@geo-solutions.com
²Professor Emeritus, Department of Civil and Environmental Engineering, Bucknell University, One Dent Drive, Lewisburg, PA; E-mail: evans@bucknell.edu

Overview:

The authors approach this text from the viewpoint of a practitioner and an academic. This combination provides a wide viewpoint on several nuanced concepts related to the subject construction method. The book is written to present a fundamental understanding of slurry trench construction and includes an introduction to slurry trenching, a short history of the method, a discussion of alternate construction techniques, detailed descriptions of slurry trench construction methods, and an overview of some of the fundamental principles needed to understand and implement the slurry trenching technique. The book is meant to be primarily a resource for practicing engineers and researchers and secondarily as a supplemental text for graduate or advanced undergraduate instruction. Practitioners engaged in the design or construction of slurry trenches are the primary users of this book. Specialized texts of this nature are challenging in that the content is meant to be comprehensive all the while the industry is constantly changing. This constant change is true of all techniques in the ground improvement industry because the industry is constantly improving as modern design, research, and construction are pushing the boundaries of the profession. As with any specialized construction technique, readers are encouraged to expand their understanding of slurry trenching by keeping up with current research and practice. Ideally, readers will come to this book with a basic understanding of geology, soil mechanics, mathematics, and natural sciences commonly provided during the first three years of an undergraduate education in civil engineering.

Chapter List

Chapter 1 – Introduction, History, Deployment Options
- What is a slurry trench?

Chapter 2 – Types of Slurry Trenching
- What slurry trenching methods are available?

Chapter 3 – Alternate Construction Approaches
- What are alternate construction approaches to slurry trenching?
Chapter 4 – Construction Procedures
How is slurry trenching performed?

Chapter 5 – Fundamental Concepts
What else should I know before I choose to implement a slurry trench?

Chapter 6 – Summary Takeaways
What are the final takeaways about slurry trenching?

Example Content from Chapter 1 (What is a Slurry Trench?):

A slurry wall or slurry trench may be broadly defined as any vertical underground feature (wall) that is installed using slurry to support the excavation. The concept of using a slurry to support the sidewalls of an excavation is a natural extension of the use of mud supported drilling wherein slurries are used to keep the borehole open. The term slurry trenching is widely used to refer to construction of non-structural walls to accomplish environmental and geotechnical objectives. In the USA, practitioners often use the term slurry wall for structural wall installations that are also commonly known as diaphragm walls. For the purposes of this book, the term slurry trench is used to describe the variety of unreinforced wall types. Hence this book is not about structural diaphragm walls where the slurry is replaced by reinforced concrete but rather those walls where the slurry is left to harden in place or replaced with materials of significantly lower strength than reinforced concrete.

Slurry trenching is a term that describes the means of construction where an excavation is made under a slurry head and the role of the slurry is to maintain trench stability. Slurry trench wall, slurry wall, vertical cutoff wall, cutoff wall, and vertical barrier are all terms that refer to the finished product. For slurry trenching, the wall may result from hardening of the slurry used to excavate the trench or from materials placed in the trench to replace the slurry. Cutoff walls installed using other methods such as soil mixing, sheet-piling, secant piling, jet grouting, and injection grouting are not slurry walls. These other methods are not based on the slurry trench construction method and are not the principal subject of this text. These alternatives to slurry trenching are, however, summarized in this book for ease of comparison.

List of Figures

Figure 1. Slurry supported trench demonstrated in the laboratory
Figure 2. Construction of a deep SB slurry wall in the 1970s
Figure 3. Slurry trenching applications
Figure 4. Circumferential slurry trench cutoff (after LaGrega et al. 2010)
Figure 5. Upgradient (a) and downgradient (b) cutoff walls (from LaGrega et al. 2010)
Figure 6. Placement of cutoff walls for dams and levees
Figure 7. Primary and secondary trenches for over-excavation and replacement
Figure 8. One-pass trencher from DeWind (left) and the TRD trench from Keller (right)
Figure 9. Auger soil mixing (from Geo-Solutions, Inc.)
Figure 10. Diaphragm wall in service (from Evans et al. 2021)
Figure 11. Schematic of vibrating beam (left) and photo of vibrating beam wall installation (right, from Geo-Solutions, Inc.)
Figure 12. Jet grouting types (from Evans et al. 2021, www.railsystem.net)
Figure 13. Simple permeation grouting tip with attached drive point (from Evans et al. 2021)
Figure 14. Secant pile walls for groundwater cutoff and earth retention (from Evans et al. 2021)
Figure 15. Sheet pile wall with tiebacks
Figure 16. Frozen ground excavation support system (courtesy of Geo-Solutions, Inc.)
Figure 17. Flow diagram of flash mixer
Figure 18. Bentonite slurry flash mixer with slurry going into storage pond (courtesy of Geo-Solutions, Inc.)
Figure 19. Bentonite slurry storage tanks (left) and storage pond (right) (courtesy of Geo-Solutions, Inc.)
Figure 20. Slurry mixing plants (batch type mixing on left, continuous mixing through density monitoring on right) (courtesy of Geo-Solutions, Inc.)
Figure 21. Slurry storage and circulation pond configurations
Figure 22. Conventional excavator for slurry trenching (courtesy of Geo-Solutions, Inc.)
Figure 23. Examples of long sticks on excavators for slurry trench excavation (courtesy of Geo-Solutions, Inc.)
Figure 24. Side by side comparison of hydraulic (left) and mechanical (right) clamshells (from Mauro et al. 2013)
Figure 25. Examples of clamshell excavators in action (courtesy of Geo-Solutions, Inc.)
Figure 26. Hydromill photo (left, Wikipedia) and hydromill schematic (right, courtesy of Keller)
Figure 27. Slurry trench excavation sequence
Figure 28. Cleaning of excavation bottom and backfill slope of sediments (not to scale)
Figure 29. Open trench
Figure 30. Movement of excavator bucket with a long stick over backfill
Figure 31. Layout details of an excavation work platform (plan view)
Figure 32. Representative cross-section to control total seepage and exit gradients at the Herbert Hoover Dike (USACE)
Figure 33. Excavator refusal
Figure 34. Desanding equipment
Figure 35. Cross-sectional schematic of excavation platform and backfill mixing area
Figure 36. Remote mixing pad with earthen dikes to confine the backfill
Figure 37. SCB mixing (left) and SCB placement in the slurry trench (right) (from Ryan and Day 2002)
Figure 38. Starter slope for backfill placement (not to scale)
Figure 39. Trench soundings to determine sediment accumulation or trench sidewall collapse (not to scale)
Figure 40. Temporary protective cover over the slurry trench
Figure 41. Schematic of Marsh funnel viscosity measurement equipment
Figure 42. Photo of sampling slurry directly into Marsh funnel
Figure 43. Mud balance for measurement of unit weight and/or density
Figure 44. Bleed test schematic (a) and photo of a completed bleed test (b)
Figure 45. Slump test on SB backfill
Figure 46. SB backfill slump measured in the laboratory and field (from Malusis et al. 2008)
Figure 47. Graphical representation of Mohr-Coulomb failure criteria
Figure 48. Mohr’s circle of stress for an unconfined compression test sample
Figure 49. Typical stress-strain relationships for two types of slurry wall materials (not to scale)
Figure 50. Unconfined compression test in progress
Figure 51. Grain size distributions from an SB cutoff wall constructed in Montandon, PA (Barlow 2018)
Figure 52. Phase diagram
Figure 53. Mechanisms of slurry & soil interaction at the filter cake (modified after Coughenour et al. 2023)
Figure 54. Effectiveness of backfill made of excavated soils
Figure 55. Dispersion of contaminants from a point source
Figure 56. Photograph of sedimentation tests with control (left) and CaCl₂ (right)
Figure 57. Desiccation test (cracking pattern test) results.
Figure 58. Filter press setup for modified filter press testing (side by side samples)
Figure 59. Plot of filter cake permeability ratio from modified filter press test (GW = groundwater, MW = municipal / tap water)
Figure 60. Permeation of SB backfills with aniline and carbon tetrachloride (redrawn from Evans et al. 1985)
Figure 61. Photo of self-hardening slurry immersion test

List of Tables

Table 1. Relative costs of slurry trench walls
Table 2. Relative costs of Alternates
Table 3. Pore fluid increases effect on bentonite swelling (after Evans et al. 1983)
Table 4. Long term permeability testing variables and their impact (modified from Evans and Fang 1988)
Table 5. Key properties of materials in slurry trenching

References:

Tamaro, G. J. (2002). World trade center" bathtub from Genesis to Armageddon. *Bridge*, 32(1), (pp.11-17).

Index

active adsorption advection aggregate alignment
arching
attapulgite
Atterberg limits
backfill segregation
bathtub
Bingham fluids
bio-polymer
bleed
borrow materials
breaker
breaking slurry
breakthrough
budget
clamshells
clay
colloids
compaction
compatibility
compressibility
concrete
consolidation
contaminant
cost
curvature
Darcy’s law
density
desanding
desiccation
desilters
desilting
development (trench)
dewatering
diaphragm wall
diffuse double layer
diffusion
dispersion
DNAPL
drainage
electrolyte
embedment
factor of safety
filter cake
filters
fines content
flocculation
fluids
freezing
friction angle
gel strength
gradient
grain size distribution
gravel
grouting
guar gum
hanging wall
hydration
hydraulic conductivity
hydromill
impermeable
incompatibility
interlayer
key
laydown
leakage
long stick
loss on ignition
Marsh funnel
minerology
modified filter press
Mohr’s circle
moisture content
mud balance
NAPL
nonaqueous phase liquids
one phase
open cuts
organic
pathways
permeability
pH
piano key
piping
polymer
porosity
portland cement
principal stress
project goals
pumping
refusal
retardation
saline
salt
sand
secant pile walls
sedimentation
self-hardening
semifluid
sepiolite
shear strength
silos
silt
slag
slope
slump
slurry breaker
slurry pond
sorption
spoils
staging
suspended solids
suspension
swelling
termination
thixotropy
trench stability
UCS
unsuitable soils
venturi
venturi mixer
viscometers
viscosity
void ratio
water content
water source
window
work platform
workability