Geo-Solutions
 
  EVENTS
NEWS
REQUEST INFO
HOME
EMPLOYEES

SPEAK WITH OUR EXPERTS: 724-335-7273

 
Geo-Solutions
WHO WE ARE WHAT WE DO HEALTH & SAFETY TECHNICAL RESOURCES CONTACT US
Geo-Solutions
 
 
Slurry Walls Soil Mixing Bio-Polymer Trenches Permeable Reactive Barriers Grouting MGP Sites Levee/Dam Reinforcement & Repair Wetlands
 

Cement Bentonite


Kingston, TN: Cement-Bentonite Slurry Wall, Kingston Ash Recovery Project Perimeter Wall Stabilization

slurry-cement-bentonite-kingston-tn

A dike failure at the Kingston Fossil Plant on Dec. 22, 2008 released an estimated 5.4 million cubic yards of coal ash from a dredge cell to the adjacent area, ruptured a natural gas line, disrupted power and transportation, rendered three homes uninhabitable, and resulted in the evacuation of a nearby residential area.

The removal of coal ash from the adjacent Emory River was completed in May, 2010. The reconstruction of the failed dike, along with reinforcement of the remainder of the containment cells was completed to prevent future movement of impounded ash. The installation of the Perimeter Wall Stabilization (PWS) was a key component of dike reinforcement.

The PWS is divided into eight segments around the property with differing design criteria in each area. The typical design configuration includes continuous Inboard and Outboard walls with a series of connecting shear walls that are perpendicular to the Inboard Wall lateral wall segments and are designed to withstand shear loads. In some segments, the shear walls extend beyond the Outboard perimeter wall to form a buttress to the Outboard wall. Each segment has different treatment widths and area-replacement ratios to account for differing failure modes in the most economical manner.

Geo-Solutions installed the PWS using the slurry wall trenching method. The slurry wall was installed using a custom designed long reach boom and long stick excavators fitted with four foot wide trenching buckets. The trenching bucket was specifically designed for keying the wall into the shale bedrock formation at the site. The trench was excavated using Cement-Bentonite slurry, which acts as hydraulic shoring during excavation and cures in the trench to become the permanent backfill material.

slurry-cement-bentonite-kingston-tn

The self-hardening slurry included a combination of Ground Granulated Blast Furnace Slag cement, Portland cement, and bentonite slurry. The proportions of the mixture were developed during an extensive laboratory testing program that evaluated over 70 candidate mixtures. Multiple mix recipes have been used in production segments to accommodate different needs in the design. The cured CB slurry reached an unconfined compressive strength (UCS) of 200-400 psi.

The CB slurry wall was keyed into the local shale bedrock formation which occurs at depths ranging from 45 to 65 feet below ground surface (bgs) and bedding planes that dip from 15º to 20º from horizontal. The self-hardening slurry wall trenching method employed on the PWS Project offers a number of distinct advantages over other methodologies including:

  • A homogeneous wall is installed, creating a continuous perimeter wall system with more consistent strengths throughout
  • No in-situ materials are used
  • A high capacity batch plant produces a consistent product
  • No cold joints; panels are overlapped for tight tie-in to previous work
  • Able to follow sloping rock and more accurate ability to measure bedrock key-in than is inherent with in other geotechnical construction methods such as soil mixing
  • The process is efficient with no wasted mixing; the entire width of the wall is the effective width of the wall.
slurry-cement-bentonite-kingston-tn

The Perimeter Wall footprint forms a continuous boundary of approximately 11,500 feet around the property. Geo-Solutions installed more than 12 linear miles (560,000 cubic yards) of trench, making it the largest Cement-Bentonite slurry wall installation in US history.

Key project challenges included concurrent design and construction. Geo-Solutions worked closely with the design engineer on segments of the design to ensure constructability and smooth transition between the segments.

An additional challenge was the strata through which excavation occurs. Generally, the top 15 feet of the soil profile consisted of the coal ash which is highly liquefiable. This requires care in both the excavation and stability of work platform. The remainder of the profile consisted of sand and silt underlain with the shale bedrock key-in layer. Because of the displacement during the ash slide, occasional non-native type materials had also been encountered.



 
   

Corporate Headquarters: 1250 Fifth Avenue • New Kensington, PA 15068 • 724-335-7273

© 2014

Geo-Solutions Facebook Geo-Solutions
Facebook
Geo-Solutions Linkedin Geo-Solutions
Linkedin
Geo-Solutions Canada Canada
Geo-Solutions
Geo-Solutions YouTube Geo-Solutions
YouTube
Geo-Solutions YouTube Geo-Solutions
Google +